Source code for alibi_detect.cd.keops.learned_kernel

from copy import deepcopy
from functools import partial
from tqdm import tqdm
import numpy as np
from pykeops.torch import LazyTensor
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from typing import Callable, Dict, List, Optional, Union, Tuple
from alibi_detect.cd.base import BaseLearnedKernelDrift
from alibi_detect.utils.pytorch import get_device, predict_batch
from alibi_detect.utils.pytorch.data import TorchDataset
from alibi_detect.utils.frameworks import Framework
from alibi_detect.utils._types import TorchDeviceType


[docs] class LearnedKernelDriftKeops(BaseLearnedKernelDrift):
[docs] def __init__( self, x_ref: Union[np.ndarray, list], kernel: Union[nn.Module, nn.Sequential], p_val: float = .05, x_ref_preprocessed: bool = False, preprocess_at_init: bool = True, update_x_ref: Optional[Dict[str, int]] = None, preprocess_fn: Optional[Callable] = None, n_permutations: int = 100, batch_size_permutations: int = 1000000, var_reg: float = 1e-5, reg_loss_fn: Callable = (lambda kernel: 0), train_size: Optional[float] = .75, retrain_from_scratch: bool = True, optimizer: torch.optim.Optimizer = torch.optim.Adam, # type: ignore learning_rate: float = 1e-3, batch_size: int = 32, batch_size_predict: int = 1000000, preprocess_batch_fn: Optional[Callable] = None, epochs: int = 3, num_workers: int = 0, verbose: int = 0, train_kwargs: Optional[dict] = None, device: TorchDeviceType = None, dataset: Callable = TorchDataset, dataloader: Callable = DataLoader, input_shape: Optional[tuple] = None, data_type: Optional[str] = None ) -> None: """ Maximum Mean Discrepancy (MMD) data drift detector where the kernel is trained to maximise an estimate of the test power. The kernel is trained on a split of the reference and test instances and then the MMD is evaluated on held out instances and a permutation test is performed. For details see Liu et al (2020): Learning Deep Kernels for Non-Parametric Two-Sample Tests (https://arxiv.org/abs/2002.09116) Parameters ---------- x_ref Data used as reference distribution. kernel Trainable PyTorch module that returns a similarity between two instances. p_val p-value used for the significance of the test. x_ref_preprocessed Whether the given reference data `x_ref` has been preprocessed yet. If `x_ref_preprocessed=True`, only the test data `x` will be preprocessed at prediction time. If `x_ref_preprocessed=False`, the reference data will also be preprocessed. preprocess_at_init Whether to preprocess the reference data when the detector is instantiated. Otherwise, the reference data will be preprocessed at prediction time. Only applies if `x_ref_preprocessed=False`. update_x_ref Reference data can optionally be updated to the last n instances seen by the detector or via reservoir sampling with size n. For the former, the parameter equals {'last': n} while for reservoir sampling {'reservoir_sampling': n} is passed. preprocess_fn Function to preprocess the data before applying the kernel. n_permutations The number of permutations to use in the permutation test once the MMD has been computed. batch_size_permutations KeOps computes the n_permutations of the MMD^2 statistics in chunks of batch_size_permutations. var_reg Constant added to the estimated variance of the MMD for stability. reg_loss_fn The regularisation term reg_loss_fn(kernel) is added to the loss function being optimized. train_size Optional fraction (float between 0 and 1) of the dataset used to train the kernel. The drift is detected on `1 - train_size`. retrain_from_scratch Whether the kernel should be retrained from scratch for each set of test data or whether it should instead continue training from where it left off on the previous set. optimizer Optimizer used during training of the kernel. learning_rate Learning rate used by optimizer. batch_size Batch size used during training of the kernel. batch_size_predict Batch size used for the trained drift detector predictions. preprocess_batch_fn Optional batch preprocessing function. For example to convert a list of objects to a batch which can be processed by the kernel. epochs Number of training epochs for the kernel. Corresponds to the smaller of the reference and test sets. num_workers Number of workers for the dataloader. The default (`num_workers=0`) means multi-process data loading is disabled. Setting `num_workers>0` may be unreliable on Windows. verbose Verbosity level during the training of the kernel. 0 is silent, 1 a progress bar. train_kwargs Optional additional kwargs when training the kernel. device Device type used. The default tries to use the GPU and falls back on CPU if needed. Can be specified by passing either ``'cuda'``, ``'gpu'``, ``'cpu'`` or an instance of ``torch.device``. Relevant for 'pytorch' and 'keops' backends. dataset Dataset object used during training. dataloader Dataloader object used during training. Only relevant for 'pytorch' backend. input_shape Shape of input data. data_type Optionally specify the data type (tabular, image or time-series). Added to metadata. """ super().__init__( x_ref=x_ref, p_val=p_val, x_ref_preprocessed=x_ref_preprocessed, preprocess_at_init=preprocess_at_init, update_x_ref=update_x_ref, preprocess_fn=preprocess_fn, n_permutations=n_permutations, train_size=train_size, retrain_from_scratch=retrain_from_scratch, input_shape=input_shape, data_type=data_type ) self.meta.update({'backend': Framework.KEOPS.value}) # Set device, define model and training kwargs self.device = get_device(device) self.original_kernel = kernel self.kernel = deepcopy(kernel) # Check kernel format self.has_proj = hasattr(self.kernel, 'proj') and isinstance(self.kernel.proj, nn.Module) self.has_kernel_b = hasattr(self.kernel, 'kernel_b') and isinstance(self.kernel.kernel_b, nn.Module) # Define kwargs for dataloader and trainer self.dataset = dataset self.dataloader = partial(dataloader, batch_size=batch_size, shuffle=True, drop_last=True, num_workers=num_workers) self.train_kwargs = {'optimizer': optimizer, 'epochs': epochs, 'preprocess_fn': preprocess_batch_fn, 'reg_loss_fn': reg_loss_fn, 'learning_rate': learning_rate, 'verbose': verbose} if isinstance(train_kwargs, dict): self.train_kwargs.update(train_kwargs) self.j_hat = LearnedKernelDriftKeops.JHat( self.kernel, var_reg, self.has_proj, self.has_kernel_b).to(self.device) # Set prediction and permutation batch sizes self.batch_size_predict = batch_size_predict self.batch_size_perms = batch_size_permutations self.n_batches = 1 + (n_permutations - 1) // batch_size_permutations
[docs] class JHat(nn.Module): """ A module that wraps around the kernel. When passed a batch of reference and batch of test instances it returns an estimate of a correlate of test power. Equation 4 of https://arxiv.org/abs/2002.09116 """ def __init__(self, kernel: nn.Module, var_reg: float, has_proj: bool, has_kernel_b: bool): super().__init__() self.kernel = kernel self.has_proj = has_proj self.has_kernel_b = has_kernel_b self.var_reg = var_reg
[docs] def forward(self, x: torch.Tensor, y: torch.Tensor) -> torch.Tensor: n = len(x) if self.has_proj and isinstance(self.kernel.proj, nn.Module): x_proj, y_proj = self.kernel.proj(x), self.kernel.proj(y) else: x_proj, y_proj = x, y x2_proj, x_proj = LazyTensor(x_proj[None, :, :]), LazyTensor(x_proj[:, None, :]) y2_proj, y_proj = LazyTensor(y_proj[None, :, :]), LazyTensor(y_proj[:, None, :]) if self.has_kernel_b: x2, x = LazyTensor(x[None, :, :]), LazyTensor(x[:, None, :]) y2, y = LazyTensor(y[None, :, :]), LazyTensor(y[:, None, :]) else: x, x2, y, y2 = None, None, None, None k_xy = self.kernel(x_proj, y2_proj, x, y2) k_xx = self.kernel(x_proj, x2_proj, x, x2) k_yy = self.kernel(y_proj, y2_proj, y, y2) h_mat = k_xx + k_yy - k_xy - k_xy.t() h_i = h_mat.sum(1).squeeze(-1) h = h_i.sum() mmd2_est = (h - n) / (n * (n - 1)) var_est = 4 * h_i.square().sum() / (n ** 3) - 4 * h.square() / (n ** 4) reg_var_est = var_est + self.var_reg return mmd2_est/reg_var_est.sqrt()
[docs] def score(self, x: Union[np.ndarray, list]) -> Tuple[float, float, float]: """ Compute the p-value resulting from a permutation test using the maximum mean discrepancy as a distance measure between the reference data and the data to be tested. The kernel used within the MMD is first trained to maximise an estimate of the resulting test power. Parameters ---------- x Batch of instances. Returns ------- p-value obtained from the permutation test, the MMD^2 between the reference and test set, \ and the MMD^2 threshold above which drift is flagged. """ x_ref, x_cur = self.preprocess(x) (x_ref_tr, x_cur_tr), (x_ref_te, x_cur_te) = self.get_splits(x_ref, x_cur) dl_ref_tr, dl_cur_tr = self.dataloader(self.dataset(x_ref_tr)), self.dataloader(self.dataset(x_cur_tr)) self.kernel = deepcopy(self.original_kernel) if self.retrain_from_scratch else self.kernel self.kernel = self.kernel.to(self.device) train_args = [self.j_hat, (dl_ref_tr, dl_cur_tr), self.device] LearnedKernelDriftKeops.trainer(*train_args, **self.train_kwargs) # type: ignore m, n = len(x_ref_te), len(x_cur_te) if isinstance(x_ref_te, np.ndarray) and isinstance(x_cur_te, np.ndarray): x_all = torch.from_numpy(np.concatenate([x_ref_te, x_cur_te], axis=0)).float() else: x_all = x_ref_te + x_cur_te # type: ignore[assignment] perms = [torch.randperm(m + n) for _ in range(self.n_permutations)] mmd2, mmd2_permuted = self._mmd2(x_all, perms, m, n) if self.device.type == 'cuda': mmd2, mmd2_permuted = mmd2.cpu(), mmd2_permuted.cpu() p_val = (mmd2 <= mmd2_permuted).float().mean() idx_threshold = int(self.p_val * len(mmd2_permuted)) distance_threshold = torch.sort(mmd2_permuted, descending=True).values[idx_threshold] return p_val.numpy().item(), mmd2.numpy().item(), distance_threshold.numpy()
def _mmd2(self, x_all: Union[list, torch.Tensor], perms: List[torch.Tensor], m: int, n: int) \ -> Tuple[torch.Tensor, torch.Tensor]: """ Batched (across the permutations) MMD^2 computation for the original test statistic and the permutations. Parameters ---------- x_all Concatenated reference and test instances. perms List with permutation vectors. m Number of reference instances. n Number of test instances. Returns ------- MMD^2 statistic for the original and permuted reference and test sets. """ preprocess_batch_fn = self.train_kwargs['preprocess_fn'] if isinstance(preprocess_batch_fn, Callable): # type: ignore[arg-type] x_all = preprocess_batch_fn(x_all) # type: ignore[operator] if self.has_proj: x_all_proj = predict_batch(x_all, self.kernel.proj, device=self.device, batch_size=self.batch_size_predict, dtype=x_all.dtype if isinstance(x_all, torch.Tensor) else torch.float32) else: x_all_proj = x_all x, x2, y, y2 = None, None, None, None k_xx, k_yy, k_xy = [], [], [] for batch in range(self.n_batches): i, j = batch * self.batch_size_perms, (batch + 1) * self.batch_size_perms # Stack a batch of permuted reference and test tensors and their projections x_proj = torch.cat([x_all_proj[perm[:m]][None, :, :] for perm in perms[i:j]], 0) y_proj = torch.cat([x_all_proj[perm[m:]][None, :, :] for perm in perms[i:j]], 0) if self.has_kernel_b: x = torch.cat([x_all[perm[:m]][None, :, :] for perm in perms[i:j]], 0) y = torch.cat([x_all[perm[m:]][None, :, :] for perm in perms[i:j]], 0) if batch == 0: x_proj = torch.cat([x_all_proj[None, :m, :], x_proj], 0) y_proj = torch.cat([x_all_proj[None, m:, :], y_proj], 0) if self.has_kernel_b: x = torch.cat([x_all[None, :m, :], x], 0) # type: ignore[call-overload] y = torch.cat([x_all[None, m:, :], y], 0) # type: ignore[call-overload] x_proj, y_proj = x_proj.to(self.device), y_proj.to(self.device) if self.has_kernel_b: x, y = x.to(self.device), y.to(self.device) # Batch-wise kernel matrix computation over the permutations with torch.no_grad(): x2_proj, x_proj = LazyTensor(x_proj[:, None, :, :]), LazyTensor(x_proj[:, :, None, :]) y2_proj, y_proj = LazyTensor(y_proj[:, None, :, :]), LazyTensor(y_proj[:, :, None, :]) if self.has_kernel_b: x2, x = LazyTensor(x[:, None, :, :]), LazyTensor(x[:, :, None, :]) y2, y = LazyTensor(y[:, None, :, :]), LazyTensor(y[:, :, None, :]) k_xy.append(self.kernel(x_proj, y2_proj, x, y2).sum(1).sum(1).squeeze(-1)) k_xx.append(self.kernel(x_proj, x2_proj, x, x2).sum(1).sum(1).squeeze(-1)) k_yy.append(self.kernel(y_proj, y2_proj, y, y2).sum(1).sum(1).squeeze(-1)) c_xx, c_yy, c_xy = 1 / (m * (m - 1)), 1 / (n * (n - 1)), 2. / (m * n) # Note that the MMD^2 estimates assume that the diagonal of the kernel matrix consists of 1's stats = c_xx * (torch.cat(k_xx) - m) + c_yy * (torch.cat(k_yy) - n) - c_xy * torch.cat(k_xy) return stats[0], stats[1:]
[docs] @staticmethod def trainer( j_hat: JHat, dataloaders: Tuple[DataLoader, DataLoader], device: torch.device, optimizer: Callable = torch.optim.Adam, learning_rate: float = 1e-3, preprocess_fn: Callable = None, epochs: int = 20, reg_loss_fn: Callable = (lambda kernel: 0), verbose: int = 1, ) -> None: """ Train the kernel to maximise an estimate of test power using minibatch gradient descent. """ optimizer = optimizer(j_hat.parameters(), lr=learning_rate) j_hat.train() loss_ma = 0. for epoch in range(epochs): dl_ref, dl_cur = dataloaders dl = tqdm(enumerate(zip(dl_ref, dl_cur)), total=min(len(dl_ref), len(dl_cur))) if verbose == 1 else \ enumerate(zip(dl_ref, dl_cur)) for step, (x_ref, x_cur) in dl: if isinstance(preprocess_fn, Callable): # type: ignore x_ref, x_cur = preprocess_fn(x_ref), preprocess_fn(x_cur) x_ref, x_cur = x_ref.to(device), x_cur.to(device) optimizer.zero_grad() # type: ignore estimate = j_hat(x_ref, x_cur) loss = -estimate + reg_loss_fn(j_hat.kernel) # ascent loss.backward() optimizer.step() # type: ignore if verbose == 1: loss_ma = loss_ma + (loss.item() - loss_ma) / (step + 1) dl.set_description(f'Epoch {epoch + 1}/{epochs}') dl.set_postfix(dict(loss=loss_ma))