Source code for alibi.explainers.pd_variance

import copy
import itertools
import logging
import math
import numbers
import sys
from enum import Enum
from typing import Any, Callable, Dict, List, Optional, Tuple, Union

import matplotlib.pyplot as plt
import numpy as np
from sklearn.base import BaseEstimator

from alibi.api.defaults import (DEFAULT_DATA_PD, DEFAULT_DATA_PDVARIANCE, DEFAULT_META_PDVARIANCE)
from alibi.api.interfaces import Explainer, Explanation
from alibi.explainers import plot_pd
from alibi.explainers.partial_dependence import (Kind, PartialDependence,
                                                 TreePartialDependence)
from alibi.utils import _get_options_string

logger = logging.getLogger(__name__)

if sys.version_info >= (3, 8):
    from typing import Literal
else:
    from typing_extensions import Literal


[docs] class Method(str, Enum): """ Enumeration of supported methods. """ IMPORTANCE = 'importance' INTERACTION = 'interaction'
[docs] class PartialDependenceVariance(Explainer): """ Implementation of the partial dependence(PD) variance feature importance and feature interaction for tabular datasets. The method measure the importance feature importance as the variance within the PD function. Similar, the potential feature interaction is measured by computing the variance within the two-way PD function by holding one variable constant and letting the other vary. Supports black-box models and the following `sklearn` tree-based models: `GradientBoostingClassifier`, `GradientBoostingRegressor`, `HistGradientBoostingClassifier`, `HistGradientBoostingRegressor`, `HistGradientBoostingRegressor`, `DecisionTreeRegressor`, `RandomForestRegressor`. For details of the method see the original paper: https://arxiv.org/abs/1805.04755 ."""
[docs] def __init__(self, predictor: Union[BaseEstimator, Callable[[np.ndarray], np.ndarray]], feature_names: Optional[List[str]] = None, categorical_names: Optional[Dict[int, List[str]]] = None, target_names: Optional[List[str]] = None, verbose: bool = False): """ Initialize black-box/tree-based model implementation for the partial dependence variance feature importance. Parameters ---------- predictor A `sklearn` estimator or a prediction function which receives as input a `numpy` array of size `N x F` and outputs a `numpy` array of size `N` (i.e. `(N, )`) or `N x T`, where `N` is the number of input instances, `F` is the number of features and `T` is the number of targets. feature_names A list of feature names used for displaying results.E categorical_names Dictionary where keys are feature columns and values are the categories for the feature. Necessary to identify the categorical features in the dataset. An example for `categorical_names` would be:: category_map = {0: ["married", "divorced"], 3: ["high school diploma", "master's degree"]} target_names A list of target/output names used for displaying results. verbose Whether to print the progress of the explainer. Notes ----- The length of the `target_names` should match the number of columns returned by a call to the `predictor`. For example, in the case of a binary classifier, if the predictor outputs a decision score (i.e. uses the `decision_function` method) which returns one column, then the length of the `target_names` should be one. On the other hand, if the predictor outputs a prediction probability (i.e. uses the `predict_proba` method) which returns two columns (one for the negative class and one for the positive class), then the length of the `target_names` should be two. """ super().__init__(meta=copy.deepcopy(DEFAULT_META_PDVARIANCE)) # initialize the pd explainer PartialDependenceClass = TreePartialDependence if isinstance(predictor, BaseEstimator) else PartialDependence self.pd_explainer = PartialDependenceClass(predictor=predictor, feature_names=feature_names, categorical_names=categorical_names, target_names=target_names, verbose=verbose)
[docs] def explain(self, X: np.ndarray, features: Optional[Union[List[int], List[Tuple[int, int]]]] = None, method: Literal['importance', 'interaction'] = 'importance', percentiles: Tuple[float, float] = (0., 1.), grid_resolution: int = 100, grid_points: Optional[Dict[int, Union[List, np.ndarray]]] = None) -> Explanation: """ Calculates the variance partial dependence feature importance for each feature with respect to the all targets and the reference dataset `X`. Parameters ---------- X A `N x F` tabular dataset used to calculate partial dependence curves. This is typically the training dataset or a representative sample. features A list of features for which to compute the feature importance or a list of feature pairs for which to compute the feature interaction. Some example of `features` would be: ``[0, 1, 3]``, ``[(0, 1), (0, 3), (1, 3)]``, where ``0``,``1``, and ``3`` correspond to the columns 0, 1, and 3 in `X`. If not provided, the feature importance or the feature interaction will be computed for every feature or for every combination of feature pairs, depending on the parameter `method`. method Flag to specify whether to compute the feature importance or the feature interaction of the elements provided in `features`. Supported values: ``'importance'`` | ``'interaction'``. percentiles Lower and upper percentiles used to limit the feature values to potentially remove outliers from low-density regions. Note that for features with not many data points with large/low values, the PD estimates are less reliable in those extreme regions. The values must be in [0, 1]. Only used with `grid_resolution`. grid_resolution Number of equidistant points to split the range of each target feature. Only applies if the number of unique values of a target feature in the reference dataset `X` is greater than the `grid_resolution` value. For example, consider a case where a feature can take the following values: ``[0.1, 0.3, 0.35, 0.351, 0.4, 0.41, 0.44, ..., 0.5, 0.54, 0.56, 0.6, 0.65, 0.7, 0.9]``, and we are not interested in evaluating the marginal effect at every single point as it can become computationally costly (assume hundreds/thousands of points) without providing any additional information for nearby points (e.g., 0.35 and 351). By setting ``grid_resolution=5``, the marginal effect is computed for the values ``[0.1, 0.3, 0.5, 0.7, 0.9]`` instead, which is less computationally demanding and can provide similar insights regarding the model's behaviour. Note that the extreme values of the grid can be controlled using the `percentiles` argument. grid_points Custom grid points. Must be a `dict` where the keys are the target features indices and the values are monotonically increasing arrays defining the grid points for a numerical feature, and a subset of categorical feature values for a categorical feature. If the `grid_points` are not specified, then the grid will be constructed based on the unique target feature values available in the dataset `X`, or based on the `grid_resolution` and `percentiles` (check `grid_resolution` to see when it applies). For categorical features, the corresponding value in the `grid_points` can be specified either as array of strings or array of integers corresponding the label encodings. Note that the label encoding must match the ordering of the values provided in the `categorical_names`. Returns ------- explanation An `Explanation` object containing the data and the metadata of the calculated partial dependence curves and feature importance/interaction. See usage at `Partial dependence variance examples`_ for details .. _Partial dependence variance examples: https://docs.seldon.io/projects/alibi/en/stable/methods/PartialDependenceVariance.html """ if method not in Method.__members__.values(): raise ValueError(f"Unknown method. Received ``method={method}``. " f"Accepted `method` names are: {_get_options_string(Method)}") # get number of features n_features = X.shape[1] # construct features if not provided based on the method if features is None: features = list(range(n_features)) if method == Method.INTERACTION: features = list(itertools.combinations(features, 2)) # compute partial dependence functions params = { 'X': X, 'features': features, 'percentiles': percentiles, 'grid_resolution': grid_resolution, 'grid_points': grid_points } if not isinstance(self.pd_explainer.predictor, BaseEstimator): params.update({'kind': Kind.AVERAGE.value}) # type: ignore[dict-item] # compute partial dependence for each feature pd_explanation = self.pd_explainer.explain(**params) # type: ignore[arg-type] if method == Method.IMPORTANCE: if not all([isinstance(f, numbers.Integral) for f in features]): raise ValueError(f"For ``method='{Method.IMPORTANCE.value}'`` all features must be integers.") # compute feature importance buffers = self._compute_feature_importance(pd_explanation=pd_explanation, features=features) else: if not all([isinstance(fs, tuple) and len(fs) == 2 for fs in features]): raise ValueError(f"For ``method='{Method.INTERACTION.value}'`` all features must be " f"tuples of length 2.") # compute feature interaction buffers = self._compute_feature_interaction(pd_explanation=pd_explanation, features=features) # type: ignore[arg-type] # update `meta['params'] with the `pd_explainer.meta['params'], remove 'kind', and include 'method' self.meta['params'].update(self.pd_explainer.meta['params']) self.meta['params'].pop('kind') self.meta['params'].update({'method': method}) # build and return the explanation object return self._build_explanation(buffers=buffers)
def _compute_pd_variance(self, features: List[int], pd_values: List[np.ndarray]) -> np.ndarray: """ Computes the PD variance along the final axis for all the features. Parameters ---------- features See :py:meth:`alibi.explainers.pd_variance.PartialDependenceVariance.explain`. pd_values List of length `F` containing the PD values for each feature in `features`. Each PD value is an array with the shape `T x N1 ... x Nk` where `T` is the number of targets and `Ni` is the number of feature values along the `i` axis. Returns ------- An array of size `F x T x N1 x ... N(k-1)`, where `F` is the number of explained features, `T` is the number of targets, and `Ni` is the number of feature values along the `i` axis. """ feature_variance = [] for pdv, f in zip(pd_values, features): # `pdv` is a tensor of size `T x N1 x ... Nk`, where `T` is the number # of targets and `Ni` is the number of feature values along the axis `i` if f in self.pd_explainer.categorical_names: # type: ignore[operator] ft_var = PartialDependenceVariance._compute_pd_variance_cat(pdv) else: ft_var = PartialDependenceVariance._compute_pd_variance_num(pdv) # add extra dimension for later concatenation along the axis 0 feature_variance.append(ft_var[None, ...]) # stack the feature importance such that the array has the shape `F x T x N1 ... N(k-1)` return np.concatenate(feature_variance, axis=0) @staticmethod def _compute_pd_variance_num(pd_values: np.ndarray) -> np.ndarray: """ Computes the PD variance along the final axis for a numerical feature. Parameters ---------- pd_values Array of partial dependence values for a numerical features of size `T x N1 x ... x Nk`, where `T` is the number of targets and `Ni` is the number of feature values along the axis `i`. Returns ------- PD variance along the final axis for a numerical feature. """ return np.std(pd_values, axis=-1, ddof=1, keepdims=False) @staticmethod def _compute_pd_variance_cat(pd_values: np.ndarray) -> np.ndarray: """ Computes the PD variance along the final axis for a categorical feature. Reference to range statistic divided by 4 estimation: https://en.wikipedia.org/wiki/Standard_deviation#Bounds_on_standard_deviation Parameters ---------- pd_values Array of partial dependence values for a categorical feature of size `T x N1 x ... x Nk`, where `T` is the number of targets and `Ni` is the number of feature values along the axis `i`. Returns ------- PD variance along the final axis for a categorical feature. """ return (np.max(pd_values, axis=-1, keepdims=False) - np.min(pd_values, axis=-1, keepdims=False)) / 4 def _compute_feature_importance(self, features: List[int], pd_explanation: Explanation) -> Dict[str, Any]: """ Computes the feature importance. Parameters ---------- features List of features to compute the importance for. pd_explanation Partial dependence explanation object. Returns ------- Dictionary with all the keys necessary to build the explanation. """ return { 'feature_deciles': pd_explanation.data['feature_deciles'], 'pd_values': pd_explanation.data['pd_values'], 'feature_values': pd_explanation.data['feature_values'], 'feature_names': pd_explanation.data['feature_names'], 'feature_importance': self._compute_pd_variance(features=features, pd_values=pd_explanation.data['pd_values']).T, } def _compute_feature_interaction(self, features: List[Tuple[int, int]], pd_explanation: Explanation) -> Dict[str, Any]: """ Computes the feature interactions. Parameters ---------- features List of feature pairs to compute the interaction for. pd_explanation Partial dependence explanation object. Returns ------- Dictionary with all the keys necessary to build the explanation. """ buffers: Dict[str, Any] = { 'feature_deciles': [], 'pd_values': [], 'feature_values': [], 'feature_names': [], 'feature_interaction': [], 'conditional_importance': [], 'conditional_importance_values': [], } for i in range(len(features)): # unpack explanation feature_deciles = pd_explanation.data['feature_deciles'][i] pd_values = pd_explanation.data['pd_values'][i] feature_values = pd_explanation.data['feature_values'][i] feature_names = pd_explanation.data['feature_names'][i] # append data for the 2-way pdp buffers['feature_deciles'].append(feature_deciles) buffers['pd_values'].append(pd_values) buffers['feature_values'].append(feature_values) buffers['feature_names'].append(feature_names) # compute variance when keeping f0 value constant and vary f1. # Note that we remove the first axis here since we are dealing with only one feature conditional_importance = [] conditional_importance_values = [] for j in range(2): tmp_pd_values = pd_values if j == 0 else pd_values.transpose(0, 2, 1) # compute conditional importance plot cond_imp_vals = self._compute_pd_variance(features=[features[i][1 - j]], pd_values=[tmp_pd_values])[0] conditional_importance_values.append(cond_imp_vals) # compute feature interaction based on the conditional importance conditional_importance.append( self._compute_pd_variance(features=[features[i][j]], pd_values=[cond_imp_vals])[0] ) # compute the feature interaction as the average of the two buffers['feature_interaction'].append(np.mean(conditional_importance, axis=0, keepdims=True)) buffers['conditional_importance'].append(conditional_importance) buffers['conditional_importance_values'].append(conditional_importance_values) # transform `feature_interaction` into an array of shape `T x F`, where `T` is the number of targets # and `F` is the number of feature pairs. buffers['feature_interaction'] = np.concatenate(buffers['feature_interaction'], axis=0).T return buffers def _build_explanation(self, buffers: dict) -> Explanation: """ Helper method to build `Explanation` object. Parameters ---------- buffers Dictionary with all the data necessary to build the explanation. Returns ------- `Explanation` object. """ data = copy.deepcopy(DEFAULT_DATA_PDVARIANCE) data.update(feature_deciles=buffers['feature_deciles'], pd_values=buffers['pd_values'], feature_values=buffers['feature_values'], feature_names=buffers['feature_names']) if self.meta['params']['method'] == Method.IMPORTANCE: data.update(feature_importance=buffers['feature_importance']) else: data.update(feature_interaction=buffers['feature_interaction'], conditional_importance=buffers['conditional_importance'], conditional_importance_values=buffers['conditional_importance_values']) return Explanation(meta=self.meta, data=data)
def _plot_hbar(exp_values: np.ndarray, exp_feature_names: List[str], exp_target_names: List[str], features: List[int], targets: List[Union[str, int]], n_cols: int = 3, sort: bool = True, top_k: Optional[int] = None, title: str = '', ax: Optional[Union['plt.Axes', np.ndarray]] = None, bar_kw: Optional[dict] = None, fig_kw: Optional[dict] = None) -> 'plt.Axes': """ Horizontal bar plot. Parameters ---------- exp_values Explanation values to be plotted. exp_feature_names A list of explanation feature names. Used as the y-axis labels. exp_target_names A list of explanation target names. Determines the number of plots (i.e., one for each target). features, targets, n_cols, sort, top_k, ax, bar_kw, fig_kw See :py:meth:`alibi.explainers.pd_variance.plot_pd_variance` title The title of the bar plot. Returns ------- `plt.Axes` with the values plot. """ from matplotlib.gridspec import GridSpec default_fig_kw = {'tight_layout': 'tight'} if fig_kw is None: fig_kw = {} fig_kw = {**default_fig_kw, **fig_kw} # set feature indices feature_indices, feature_names = features, [] for ifeatures in features: feature_names.append(exp_feature_names[ifeatures]) # set target indices target_indices, target_names = [], [] for target in targets: if isinstance(target, str): target_idx = exp_target_names.index(target) target_name = target else: target_idx = target target_name = exp_target_names[target] target_indices.append(target_idx) target_names.append(target_name) # create axes if ax is None: fig, ax = plt.subplots() # number of targets will correspond to the number of axis n_targets = len(target_names) if isinstance(ax, plt.Axes) and n_targets != 1: ax.set_axis_off() # treat passed axis as a canvas for subplots fig = ax.figure # type: ignore[assignment] n_cols = min(n_cols, n_targets) n_rows = math.ceil(n_targets / n_cols) axes = np.empty((n_rows, n_cols), dtype=object) axes_ravel = axes.ravel() gs = GridSpec(n_rows, n_cols) for i, spec in enumerate(list(gs)[:n_targets]): # type: ignore[call-overload] axes_ravel[i] = fig.add_subplot(spec) else: if isinstance(ax, plt.Axes): ax = np.array(ax) if ax.size < n_targets: raise ValueError(f"Expected ax to have {n_targets} axes, got {ax.size}") axes = np.atleast_2d(ax) axes_ravel = axes.ravel() fig = axes_ravel[0].figure for i, (target_index, target_name, ax) in enumerate(zip(target_indices, target_names, axes_ravel)): width = exp_values[target_index][feature_indices] y_labels = feature_names if sort: sorted_indices = np.argsort(width)[::-1][:top_k] width = width[sorted_indices] y_labels = [y_labels[j] for j in sorted_indices] y = np.arange(len(width)) default_bar_kw = {'align': 'center'} bar_kw = default_bar_kw if bar_kw is None else {**default_bar_kw, **bar_kw} ax.barh(y=y, width=width, **bar_kw) # type: ignore[union-attr,arg-type] ax.set_yticks(y) # type: ignore[union-attr] ax.set_yticklabels(y_labels) # type: ignore[union-attr] ax.invert_yaxis() # type: ignore[union-attr] # labels read top-to-bottom ax.set_xlabel(title) # type: ignore[union-attr] ax.set_title(target_name) # type: ignore[union-attr] fig.set(**fig_kw) return axes # type: ignore[return-value] def _plot_feature_importance(exp: Explanation, features: List[int], targets: List[Union[str, int]], summarise: bool = True, n_cols: int = 3, sort: bool = True, top_k: Optional[int] = None, plot_limits: Optional[Tuple[float, float]] = None, ax: Optional[Union['plt.Axes', np.ndarray]] = None, sharey: Optional[Literal['all', 'row']] = 'all', bar_kw: Optional[dict] = None, line_kw: Optional[dict] = None, fig_kw: Optional[dict] = None): """ Feature importance plotting function. Parameters ---------- exp, features, targets, summarise, n_cols,sort, top_k, plot_limits, ax, sharey, bar_kw, line_kw, fig_kw See :py:meth:`alibi.explainers.pd_variance.plot_pd_variance`. Returns ------- `plt.Axes` with the feature importance plot. """ if summarise: # horizontal bar plot for feature importance. return _plot_hbar(exp_values=exp.data['feature_importance'], exp_feature_names=exp.data['feature_names'], exp_target_names=exp.meta['params']['target_names'], features=features, targets=targets, n_cols=n_cols, sort=sort, top_k=top_k, title='Feature importance', ax=ax, bar_kw=bar_kw, fig_kw=fig_kw) # unpack explanation and redefine targets target = targets[0] feature_names = exp.data['feature_names'] feature_values = exp.data['feature_values'] feature_deciles = exp.data['feature_deciles'] pd_values = exp.data['pd_values'] target_idx = exp.meta['params']['target_names'].index(target) if isinstance(target, str) else target feature_importance = exp.data['feature_importance'][target_idx][features] if sort: # get sorted indices sorted_indices = np.argsort(feature_importance)[::-1] features = [features[i] for i in sorted_indices][:top_k] feature_importance = feature_importance[sorted_indices][:top_k] # construct pd explanation object to reuse `plot_pd` function meta = copy.deepcopy(exp.meta) meta['params']['kind'] = 'average' data = copy.deepcopy(DEFAULT_DATA_PD) data.update(feature_names=feature_names, feature_values=feature_values, pd_values=pd_values, feature_deciles=feature_deciles) exp_pd = Explanation(meta=meta, data=data) # plot the partial dependence axes = plot_pd(exp=exp_pd, features=features, target=target, n_cols=n_cols, pd_limits=plot_limits, ax=ax, sharey=sharey, pd_num_kw=line_kw, fig_kw=fig_kw) # add title to each plot with the feature importance axes_flatten = axes.flatten() for i in range(len(features)): ft_name = feature_names[features[i]] ft_imp = feature_importance[i] axes_flatten[i].set_title('imp({}) = {:.3f}'.format(ft_name, ft_imp)) return axes def _plot_feature_interaction(exp: Explanation, features: List[int], targets: List[Union[str, int]], summarise=True, n_cols: int = 3, sort: bool = True, top_k: Optional[int] = None, plot_limits: Optional[Tuple[float, float]] = None, ax: Optional[Union['plt.Axes', np.ndarray]] = None, sharey: Optional[Literal['all', 'row']] = 'all', bar_kw: Optional[dict] = None, line_kw: Optional[dict] = None, fig_kw: Optional[dict] = None): """ Horizontal bar plot for feature interaction. Parameters ---------- exp, features, targets, summarise, n_cols, sort, top_k, plot_limits, ax, sharey, bar_kw, line_kw, fig_kw See :py:meth:`alibi.explainers.pd_variance.plot_pd_variance`. Returns ------- `plt.Axes` with the feature interaction plot. """ if summarise: feature_names = ['({}, {})'.format(*fs) for fs in exp.data['feature_names'] if isinstance(fs, tuple)] return _plot_hbar(exp_values=exp.data['feature_interaction'], exp_feature_names=feature_names, exp_target_names=exp.meta['params']['target_names'], features=features, targets=targets, n_cols=n_cols, sort=sort, top_k=top_k, title='Feature interaction', ax=ax, bar_kw=bar_kw, fig_kw=fig_kw) # unpack explanation target = targets[0] feature_names = exp.data['feature_names'] feature_values = exp.data['feature_values'] feature_deciles = exp.data['feature_deciles'] pd_values = exp.data['pd_values'] conditional_importance = exp.data['conditional_importance'] conditional_importance_values = exp.data['conditional_importance_values'] target_idx = exp.meta['params']['target_names'].index(target) if isinstance(target, str) else target feature_interaction = exp.data['feature_interaction'][target_idx][features] if sort: sorted_indices = np.argsort(feature_interaction)[::-1] features = [features[i] for i in sorted_indices][:top_k] feature_interaction = feature_interaction[sorted_indices][:top_k] conditional_importance = [conditional_importance[i] for i in sorted_indices][:top_k] # merge `pd_values` and `conditional_importance` merged_pd_values = [[pd, *cond_imp_vals] for pd, cond_imp_vals in zip(pd_values, conditional_importance_values)] merged_pd_values = list(itertools.chain.from_iterable(merged_pd_values)) # construct `feature_names` for the `merged_pd_values` merged_feature_names = [[ft_names, *ft_names] for ft_names in feature_names] merged_feature_names = list(itertools.chain.from_iterable(merged_feature_names)) # construct `feature_values` for the `merged_pd_values` merged_feature_values = [[ft_values, *ft_values] for ft_values in feature_values] merged_feature_values = list(itertools.chain.from_iterable(merged_feature_values)) # construct `feature_deciles` for the `merged_pd_values` merged_feature_deciles = [[ft_deciles, *ft_deciles] for ft_deciles in feature_deciles] merged_feature_deciles = list(itertools.chain.from_iterable(merged_feature_deciles)) # construct `features` for the `merged_features` step = 3 # because we have a 2-way pdp followed by two conditional feature importance merged_features = [[step * ft, step * ft + 1, step * ft + 2] for ft in features] merged_features = list(itertools.chain.from_iterable(merged_features)) # type: ignore[arg-type] # construct pd explanation object to reuse `plot_pd` function meta = copy.deepcopy(exp.meta) meta['params']['kind'] = 'average' data = copy.deepcopy(DEFAULT_DATA_PD) data.update(feature_names=merged_feature_names, feature_values=merged_feature_values, pd_values=merged_pd_values, feature_deciles=merged_feature_deciles) exp_pd = Explanation(meta=meta, data=data) # plot the partial dependence axes = plot_pd(exp=exp_pd, features=merged_features, target=target, n_cols=n_cols, pd_limits=plot_limits, ax=ax, sharey=sharey, pd_num_kw=line_kw, fig_kw=fig_kw) # add title to each plot with the feature importance axes_flatten = axes.flatten() for i in range(len(features)): # set title for the 2-way pdp ax = axes_flatten[step * i] (ft_name1, ft_name2) = feature_names[features[i]] # type: Tuple[str, str] # type: ignore[misc] ax.set_title('inter({},{}) = {:.3f}'.format(ft_name1, ft_name2, # type: ignore[union-attr] feature_interaction[i])) # set title for the first conditional importance plot ax = axes.flatten()[step * i + 1] ax.set_title('inter({}|{}) = {:.3f}'.format(ft_name2, ft_name1, # type: ignore[union-attr] conditional_importance[i][0][target_idx])) # set title for the second conditional importance plot ax = axes.flatten()[step * i + 2] ax.set_title('inter({}|{}) = {:.3f}'.format(ft_name1, ft_name2, # type: ignore[union-attr] conditional_importance[i][1][target_idx])) return axes
[docs] def plot_pd_variance(exp: Explanation, features: Union[List[int], Literal['all']] = 'all', targets: Union[List[Union[str, int]], Literal['all'], ] = 'all', summarise: bool = True, n_cols: int = 3, sort: bool = True, top_k: Optional[int] = None, plot_limits: Optional[Tuple[float, float]] = None, ax: Optional[Union['plt.Axes', np.ndarray]] = None, sharey: Optional[Literal['all', 'row']] = 'all', bar_kw: Optional[dict] = None, line_kw: Optional[dict] = None, fig_kw: Optional[dict] = None): """ Plot feature importance and feature interaction based on partial dependence curves on `matplotlib` axes. Parameters ---------- exp An `Explanation` object produced by a call to the :py:meth:`alibi.explainers.pd_variance.PartialDependenceVariance.explain` method. features A list of features entries provided in `feature_names` argument to the :py:meth:`alibi.explainers.pd_variance.PartialDependenceVariance.explain` method, or ``'all'`` to plot all the explained features. For example, if ``feature_names = ['temp', 'hum', 'windspeed']`` and we want to plot the values only for the ``'temp'`` and ``'windspeed'``, then we would set ``features=[0, 2]``. Defaults to ``'all'``. targets A target name/index, or a list of target names/indices, for which to plot the feature importance/interaction, or ``'all'``. Can be a mix of integers denoting target index or strings denoting entries in `exp.meta['params']['target_names']`. By default ``'all'`` to plot the importance for all features or to plot all the feature interactions. summarise Whether to plot only the summary of the feature importance/interaction as a bar plot, or plot comprehensive exposition including partial dependence plots and conditional importance plots. n_cols Number of columns to organize the resulting plot into. sort Boolean flag whether to sort the values in descending order. top_k Number of top k values to be displayed if the ``sort=True``. If not provided, then all values will be displayed. plot_limits Minimum and maximum y-limits for all the line plots. If ``None`` will be automatically inferred. ax A `matplotlib` axes object or a `numpy` array of `matplotlib` axes to plot on. sharey A parameter specifying whether the y-axis of the PD and ICE curves should be on the same scale for several features. Possible values are: ``'all'`` | ``'row'`` | ``None``. bar_kw Keyword arguments passed to the `matplotlib.pyplot.barh`_ function. line_kw Keyword arguments passed to the `matplotlib.pyplot.plot`_ function. fig_kw Keyword arguments passed to the `matplotlib.figure.set`_ function. .. _matplotlib.pyplot.barh: https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.barh.html .. _matplotlib.pyplot.plot: https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.plot.html .. _matplotlib.figure.set: https://matplotlib.org/stable/api/figure_api.html Returns ------- `plt.Axes` with the summary/detailed exposition plot of the feature importance or feature interaction. """ # sanity check for `top_k` if sort and (top_k is not None) and (top_k <= 0): raise ValueError('``top_k`` must be greater than 0.') # initialization for `targets` if targets == 'all': targets = exp.meta['params']['target_names'] # sanity check for targets if not isinstance(targets, list): raise ValueError('`targets` must be a list.') # warning that plotting partial dependence and conditional importance works for a single target if len(targets) > 1 and (not summarise): logger.warning('`targets` should be a list containing a single element when ``summarise=False``.' 'By default the first element in the list is considered.') # initialization for `features` if features == 'all': features = list(range(len(exp.data['feature_names']))) # sanity checks for `features` for ifeatures in features: if ifeatures > len(exp.data['feature_names']): raise ValueError(f"The `features` indices must be less than the " f"``len(feature_names)={len(exp.data['feature_names'])}``. Received {ifeatures}.") # sanity check for `targets` for target in targets: if isinstance(target, str) and (target not in exp.meta['params']['target_names']): raise ValueError(f"Unknown `target` name. Received {target}. " f"Available values are: {exp.meta['params']['target_names']}.") if isinstance(target, numbers.Integral) \ and (target > len(exp.meta['params']['target_names'])): # type: ignore[operator] raise IndexError(f"Target index out of range. Received {target}. " f"The number of targets is {len(exp.meta['params']['target_names'])}.") if exp.meta['params']['method'] == Method.IMPORTANCE: # plot feature importance return _plot_feature_importance(exp=exp, features=features, targets=targets, summarise=summarise, n_cols=n_cols, sort=sort, top_k=top_k, plot_limits=plot_limits, ax=ax, sharey=sharey, bar_kw=bar_kw, line_kw=line_kw, fig_kw=fig_kw) # plot feature interaction return _plot_feature_interaction(exp=exp, features=features, targets=targets, summarise=summarise, n_cols=n_cols, sort=sort, top_k=top_k, plot_limits=plot_limits, ax=ax, sharey=sharey, bar_kw=bar_kw, line_kw=line_kw, fig_kw=fig_kw)