seldon-od-model¶
Chart to deploy an outlier detector as a single model with Seldon Core v1.
Usage¶
To use this chart, you will first need to add the seldonio
Helm repo:
helm repo add seldonio https://storage.googleapis.com/seldon-charts
helm repo update
Once that’s done, you should then be able to use the inference graph template as:
helm template $MY_MODEL_NAME seldonio/seldon-od-model --namespace $MODELS_NAMESPACE
Note that you can also deploy the inference graph directly to your cluster using:
helm install $MY_MODEL_NAME seldonio/seldon-od-model --namespace $MODELS_NAMESPACE
Homepage: https://github.com/SeldonIO/seldon-core
Source Code¶
Values¶
Key |
Type |
Default |
Description |
---|---|---|---|
engine.env.SELDON_LOG_MESSAGES_EXTERNALLY |
bool |
|
|
engine.env.SELDON_LOG_MESSAGE_TYPE |
string |
|
|
engine.env.SELDON_LOG_REQUESTS |
bool |
|
|
engine.env.SELDON_LOG_RESPONSES |
bool |
|
|
engine.resources.requests.cpu |
string |
|
|
model.isolationforest.image.name |
string |
|
|
model.isolationforest.load_path |
string |
|
|
model.isolationforest.model_name |
string |
|
|
model.isolationforest.threshold |
int |
|
|
model.mahalanobis.image.name |
string |
|
|
model.mahalanobis.max_n |
int |
|
|
model.mahalanobis.n_components |
int |
|
|
model.mahalanobis.n_stdev |
int |
|
|
model.mahalanobis.start_clip |
int |
|
|
model.mahalanobis.threshold |
int |
|
|
model.name |
string |
|
|
model.parameterTypes.load_path |
string |
|
|
model.parameterTypes.max_n |
string |
|
|
model.parameterTypes.model_name |
string |
|
|
model.parameterTypes.n_components |
string |
|
|
model.parameterTypes.n_stdev |
string |
|
|
model.parameterTypes.reservoir_size |
string |
|
|
model.parameterTypes.start_clip |
string |
|
|
model.parameterTypes.threshold |
string |
|
|
model.seq2seq.image.name |
string |
|
|
model.seq2seq.load_path |
string |
|
|
model.seq2seq.model_name |
string |
|
|
model.seq2seq.reservoir_size |
int |
|
|
model.seq2seq.threshold |
float |
|
|
model.type |
string |
|
Type of outlier detector. Valid values are: |
model.vae.image.name |
string |
|
|
model.vae.load_path |
string |
|
|
model.vae.model_name |
string |
|
|
model.vae.reservoir_size |
int |
|
|
model.vae.threshold |
int |
|
|
name |
string |
|
|
predictorLabels.fluentd |
string |
|
|
predictorLabels.version |
string |
|
|
replicas |
int |
|
|
sdepLabels.app |
string |
|