This page was generated from testing/benchmarking/svcOrch/svcOrch.ipynb.

Service Orchestrator Benchmark Tests

Using a pretrained model for Tensorflow flowers dataset

  • Tests the extra latency added by the svcOrch for a medium size image (224x224) classification model.

## Setup

  • Create a 3 node cluster

  • Install Seldon Core

[ ]:
!kubectl create namespace seldon
[ ]:
!kubectl config set-context $(kubectl config current-context) --namespace=seldon
[1]:
import sys
sys.path.append('../')
from vegeta_utils import *

Put Taints Nodes

[6]:
raw=!kubectl get nodes -o jsonpath='{.items[0].metadata.name}'
firstNode = raw[0]
raw=!kubectl get nodes -o jsonpath='{.items[1].metadata.name}'
secondNode = raw[0]
raw=!kubectl get nodes -o jsonpath='{.items[2].metadata.name}'
thirdNode = raw[0]
!kubectl taint nodes '{firstNode}' loadtester=active:NoSchedule
!kubectl taint nodes '{secondNode}' model=active:NoSchedule
!kubectl taint nodes '{thirdNode}' model=active:NoSchedule
error: Node pool-triv8uq93-3oaz0 already has loadtester taint(s) with same effect(s) and --overwrite is false
error: Node pool-triv8uq93-3oaz1 already has model taint(s) with same effect(s) and --overwrite is false
error: Node pool-triv8uq93-3oazd already has model taint(s) with same effect(s) and --overwrite is false

Tensorflow Flowers Model - Latency Test

[7]:
%%writefile tf_flowers.yaml
apiVersion: machinelearning.seldon.io/v1alpha2
kind: SeldonDeployment
metadata:
  name: tf-flowers
spec:
  protocol: tensorflow
  transport: rest
  predictors:
  - graph:
      implementation: TENSORFLOW_SERVER
      modelUri: gs://kfserving-samples/models/tensorflow/flowers
      name:  flowers
      parameters:
        - name: model_name
          type: STRING
          value: flowers
    componentSpecs:
    - spec:
        containers:
        - name: flowers
          resources:
            requests:
              cpu: '2'
        tolerations:
        - key: model
          operator: Exists
          effect: NoSchedule
    name: default
    replicas: 1
Overwriting tf_flowers.yaml
[8]:
run_model("tf_flowers.yaml")
Available with 1 pods
[9]:
results = run_vegeta_test("tf_vegeta_cfg.yaml","vegeta_1worker.yaml","60m")
print(json.dumps(results, indent=4))
mean_with_executor=results["latencies"]["mean"]
{
    "latencies": {
        "total": 1200086051040,
        "mean": 82639171,
        "50th": 79832732,
        "90th": 95849466,
        "95th": 104009039,
        "99th": 128516774,
        "max": 964378237,
        "min": 58091922
    },
    "bytes_in": {
        "total": 3165796,
        "mean": 218
    },
    "bytes_out": {
        "total": 234893350,
        "mean": 16175
    },
    "earliest": "2020-07-12T15:59:55.298435559Z",
    "latest": "2020-07-12T16:19:55.34937906Z",
    "end": "2020-07-12T16:19:55.42413935Z",
    "duration": 1200050943501,
    "wait": 74760290,
    "requests": 14522,
    "rate": 12.10115293741936,
    "throughput": 12.100399111632546,
    "success": 1,
    "status_codes": {
        "200": 14522
    },
    "errors": []
}

Tensorflow Flowers Model - No executor - Latency Test

[10]:
%%writefile tf_flowers.yaml
apiVersion: machinelearning.seldon.io/v1alpha2
kind: SeldonDeployment
metadata:
  name: tf-flowers
spec:
  protocol: tensorflow
  transport: rest
  predictors:
  - graph:
      implementation: TENSORFLOW_SERVER
      modelUri: gs://kfserving-samples/models/tensorflow/flowers
      name:  flowers
      parameters:
        - name: model_name
          type: STRING
          value: flowers
    annotations:
        seldon.io/no-engine: "true"
    componentSpecs:
    - spec:
        containers:
        - name: flowers
          resources:
            requests:
              cpu: '2'
        tolerations:
        - key: model
          operator: Exists
          effect: NoSchedule
    name: default
    replicas: 1
Overwriting tf_flowers.yaml
[11]:
run_model("tf_flowers.yaml")
Available with 1 pods
[12]:
results = run_vegeta_test("tf_standalone_vegeta_cfg.yaml","vegeta_1worker.yaml","60m")
print(json.dumps(results, indent=4))
mean_no_executor=results["latencies"]["mean"]
{
    "latencies": {
        "total": 1200089018347,
        "mean": 73670289,
        "50th": 73129037,
        "90th": 81823849,
        "95th": 84928884,
        "99th": 93248220,
        "max": 976431685,
        "min": 53958421
    },
    "bytes_in": {
        "total": 3551220,
        "mean": 218
    },
    "bytes_out": {
        "total": 263490750,
        "mean": 16175
    },
    "earliest": "2020-07-12T16:21:00.12358772Z",
    "latest": "2020-07-12T16:41:00.180620249Z",
    "end": "2020-07-12T16:41:00.255483814Z",
    "duration": 1200057032529,
    "wait": 74863565,
    "requests": 16290,
    "rate": 13.574354850177793,
    "throughput": 13.573508089417606,
    "success": 1,
    "status_codes": {
        "200": 16290
    },
    "errors": []
}
[13]:
diff = (mean_with_executor - mean_no_executor) / 1e6
print("Diff in ms",diff)
Diff in ms 8.968882

GRPC Tensorflow Flowers Model - Latency Test

First create the binary proto for the flowers payload

[1]:
!python ../tf_proto_save.py --model flowers --input_path flowers.json --output_path flowers.bin
/home/clive/anaconda3/envs/seldon-core/lib/python3.6/site-packages/tensorflow/python/framework/dtypes.py:516: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.
  _np_qint8 = np.dtype([("qint8", np.int8, 1)])
/home/clive/anaconda3/envs/seldon-core/lib/python3.6/site-packages/tensorflow/python/framework/dtypes.py:517: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.
  _np_quint8 = np.dtype([("quint8", np.uint8, 1)])
/home/clive/anaconda3/envs/seldon-core/lib/python3.6/site-packages/tensorflow/python/framework/dtypes.py:518: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.
  _np_qint16 = np.dtype([("qint16", np.int16, 1)])
/home/clive/anaconda3/envs/seldon-core/lib/python3.6/site-packages/tensorflow/python/framework/dtypes.py:519: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.
  _np_quint16 = np.dtype([("quint16", np.uint16, 1)])
/home/clive/anaconda3/envs/seldon-core/lib/python3.6/site-packages/tensorflow/python/framework/dtypes.py:520: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.
  _np_qint32 = np.dtype([("qint32", np.int32, 1)])
/home/clive/anaconda3/envs/seldon-core/lib/python3.6/site-packages/tensorflow/python/framework/dtypes.py:525: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.
  np_resource = np.dtype([("resource", np.ubyte, 1)])
/home/clive/anaconda3/envs/seldon-core/lib/python3.6/site-packages/tensorboard/compat/tensorflow_stub/dtypes.py:541: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.
  _np_qint8 = np.dtype([("qint8", np.int8, 1)])
/home/clive/anaconda3/envs/seldon-core/lib/python3.6/site-packages/tensorboard/compat/tensorflow_stub/dtypes.py:542: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.
  _np_quint8 = np.dtype([("quint8", np.uint8, 1)])
/home/clive/anaconda3/envs/seldon-core/lib/python3.6/site-packages/tensorboard/compat/tensorflow_stub/dtypes.py:543: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.
  _np_qint16 = np.dtype([("qint16", np.int16, 1)])
/home/clive/anaconda3/envs/seldon-core/lib/python3.6/site-packages/tensorboard/compat/tensorflow_stub/dtypes.py:544: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.
  _np_quint16 = np.dtype([("quint16", np.uint16, 1)])
/home/clive/anaconda3/envs/seldon-core/lib/python3.6/site-packages/tensorboard/compat/tensorflow_stub/dtypes.py:545: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.
  _np_qint32 = np.dtype([("qint32", np.int32, 1)])
/home/clive/anaconda3/envs/seldon-core/lib/python3.6/site-packages/tensorboard/compat/tensorflow_stub/dtypes.py:550: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.
  np_resource = np.dtype([("resource", np.ubyte, 1)])
[14]:
%%writefile tf_flowers.yaml
apiVersion: machinelearning.seldon.io/v1alpha2
kind: SeldonDeployment
metadata:
  name: tf-flowers
spec:
  protocol: tensorflow
  transport: grpc
  predictors:
  - graph:
      implementation: TENSORFLOW_SERVER
      modelUri: gs://kfserving-samples/models/tensorflow/flowers
      name:  flowers
      parameters:
        - name: model_name
          type: STRING
          value: flowers
    componentSpecs:
    - spec:
        containers:
        - name: flowers
          resources:
            requests:
              cpu: '2'
        tolerations:
        - key: model
          operator: Exists
          effect: NoSchedule
    name: default
    replicas: 1
Overwriting tf_flowers.yaml
[15]:
run_model("tf_flowers.yaml")
Available with 1 pods
[16]:
results = run_ghz_test("flowers.bin","ghz_1worker.yaml","60m")
print(json.dumps(results, indent=4))
mean_with_executor=results["average"]
{
    "date": "2020-07-12T17:12:04Z",
    "endReason": "timeout",
    "options": {
        "host": "tf-flowers-default.seldon.svc.cluster.local:8000",
        "proto": "/proto/prediction_service.proto",
        "import-paths": [
            "/proto",
            "."
        ],
        "call": "tensorflow.serving.PredictionService/Predict",
        "insecure": true,
        "total": 1000000,
        "concurrency": 1,
        "connections": 1,
        "duration": 1800000000000,
        "timeout": 20000000000,
        "dial-timeout": 10000000000,
        "keepalive": 1800000000000,
        "binary": true,
        "CPUs": 8
    },
    "count": 22978,
    "total": 1800000675146,
    "average": 78227435,
    "fastest": 54712167,
    "slowest": 938906233,
    "rps": 12.76555076743859,
    "errorDistribution": {
        "rpc error: code = Unavailable desc = transport is closing": 1
    },
    "statusCodeDistribution": {
        "OK": 22977,
        "Unavailable": 1
    },
    "latencyDistribution": [
        {
            "percentage": 10,
            "latency": 68291719
        },
        {
            "percentage": 25,
            "latency": 71762262
        },
        {
            "percentage": 50,
            "latency": 75875238
        },
        {
            "percentage": 75,
            "latency": 81163515
        },
        {
            "percentage": 90,
            "latency": 89225781
        },
        {
            "percentage": 95,
            "latency": 97536730
        },
        {
            "percentage": 99,
            "latency": 128647238
        }
    ]
}

GRPC Tensorflow Flowers Model - No executor - Latency Test

[21]:
%%writefile tf_flowers.yaml
apiVersion: machinelearning.seldon.io/v1alpha2
kind: SeldonDeployment
metadata:
  name: tf-flowers
spec:
  protocol: tensorflow
  transport: grpc
  predictors:
  - graph:
      implementation: TENSORFLOW_SERVER
      modelUri: gs://kfserving-samples/models/tensorflow/flowers
      name:  flowers
      parameters:
        - name: model_name
          type: STRING
          value: flowers
    annotations:
        seldon.io/no-engine: "true"
    componentSpecs:
    - spec:
        containers:
        - name: flowers
          resources:
            requests:
              cpu: '2'
        tolerations:
        - key: model
          operator: Exists
          effect: NoSchedule
    name: default
    replicas: 1
Overwriting tf_flowers.yaml
[22]:
run_model("tf_flowers.yaml")
Available with 1 pods
[23]:
results = run_ghz_test("flowers.bin","ghz_standalone_1worker.yaml","60m")
print(json.dumps(results, indent=4))
mean_no_executor=results["average"]
{
    "date": "2020-07-12T18:04:44Z",
    "endReason": "timeout",
    "options": {
        "host": "tf-flowers-default.seldon.svc.cluster.local:9000",
        "proto": "/proto/prediction_service.proto",
        "import-paths": [
            "/proto",
            "."
        ],
        "call": "tensorflow.serving.PredictionService/Predict",
        "insecure": true,
        "total": 1000000,
        "concurrency": 1,
        "connections": 1,
        "duration": 1800000000000,
        "timeout": 20000000000,
        "dial-timeout": 10000000000,
        "keepalive": 1800000000000,
        "binary": true,
        "CPUs": 8
    },
    "count": 24132,
    "total": 1800013456837,
    "average": 74479232,
    "fastest": 53792435,
    "slowest": 1008191507,
    "rps": 13.406566438900391,
    "errorDistribution": {
        "rpc error: code = Unavailable desc = transport is closing": 1
    },
    "statusCodeDistribution": {
        "OK": 24131,
        "Unavailable": 1
    },
    "latencyDistribution": [
        {
            "percentage": 10,
            "latency": 67087978
        },
        {
            "percentage": 25,
            "latency": 70242403
        },
        {
            "percentage": 50,
            "latency": 73838624
        },
        {
            "percentage": 75,
            "latency": 77894265
        },
        {
            "percentage": 90,
            "latency": 82282422
        },
        {
            "percentage": 95,
            "latency": 85533746
        },
        {
            "percentage": 99,
            "latency": 93875540
        }
    ]
}
[24]:
diff = (mean_with_executor - mean_no_executor) / 1e6
print("Diff in ms",diff)
Diff in ms 3.748203
[ ]: