This page was generated from notebooks/istio_example.ipynb.
Example Seldon Core Deployments using Helm with Istio¶
Prequisites
Setup Cluster and Ingress¶
Use the setup notebook to Setup Cluster with Istio Ingress. Instructions also online.
[1]:
!kubectl create namespace seldon
namespace/seldon created
[2]:
!kubectl config set-context $(kubectl config current-context) --namespace=seldon
Context "kind-kind" modified.
Configure Istio¶
For this example we will create the default istio gateway for seldon which needs to be called seldon-gateway
. You can supply your own gateway by adding to your SeldonDeployments resources the annotation seldon.io/istio-gateway
with values the name of your istio gateway.
Create a gateway for our istio-ingress
[3]:
%%writefile resources/seldon-gateway.yaml
apiVersion: networking.istio.io/v1alpha3
kind: Gateway
metadata:
name: seldon-gateway
namespace: istio-system
spec:
selector:
istio: ingressgateway # use istio default controller
servers:
- port:
number: 80
name: http
protocol: HTTP
hosts:
- "*"
Overwriting resources/seldon-gateway.yaml
[4]:
!kubectl create -f resources/seldon-gateway.yaml -n istio-system
gateway.networking.istio.io/seldon-gateway created
Ensure the istio ingress gatewaty is port-forwarded to localhost:8004
Istio:
kubectl port-forward $(kubectl get pods -l istio=ingressgateway -n istio-system -o jsonpath='{.items[0].metadata.name}') -n istio-system 8004:8080
[1]:
ISTIO_GATEWAY = "localhost:8004"
VERSION = !cat ../version.txt
VERSION = VERSION[0]
VERSION
[1]:
'1.9.0-dev'
[2]:
from IPython.core.magic import register_line_cell_magic
@register_line_cell_magic
def writetemplate(line, cell):
with open(line, "w") as f:
f.write(cell.format(**globals()))
Start Seldon Core¶
Use the setup notebook to Install Seldon Core with Istio Ingress. Instructions also online.
Serve Single Model¶
[7]:
!helm install mymodel ../helm-charts/seldon-single-model --set model.image=seldonio/mock_classifier:$VERSION
NAME: mymodel
LAST DEPLOYED: Wed Mar 10 16:37:01 2021
NAMESPACE: seldon
STATUS: deployed
REVISION: 1
TEST SUITE: None
[8]:
!helm template mymodel ../helm-charts/seldon-single-model --set model.image=seldonio/mock_classifier:$VERSION | pygmentize -l json
---
# Source: seldon-single-model/templates/seldondeployment.json
{
"kind": "SeldonDeployment",
"apiVersion": "machinelearning.seldon.io/v1",
"metadata": {
"name": "mymodel",
"namespace": "seldon",
"labels": {}
},
"spec": {
"name": "mymodel",
"protocol": "seldon",
"annotations": {},
"predictors": [
{
"name": "default",
"graph": {
"name": "model",
"type": "MODEL",
},
"componentSpecs": [
{
"spec": {
"containers": [
{
"name": "model",
"image": "seldonio/mock_classifier:1.7.0-dev",
"env": [
{
"name": "LOG_LEVEL",
"value": "INFO"
},
],
"resources": {"requests":{"memory":"1Mi"}},
}
]
},
}
],
"replicas": 1
}
]
}
}
[9]:
!kubectl rollout status deploy/mymodel-default-0-model
Waiting for deployment "mymodel-default-0-model" rollout to finish: 0 of 1 updated replicas are available...
deployment "mymodel-default-0-model" successfully rolled out
Get predictions¶
[10]:
from seldon_core.seldon_client import SeldonClient
sc = SeldonClient(
deployment_name="mymodel", namespace="seldon", gateway_endpoint=ISTIO_GATEWAY
)
REST Request¶
[11]:
r = sc.predict(gateway="istio", transport="rest")
assert r.success == True
print(r)
Success:True message:
Request:
meta {
}
data {
tensor {
shape: 1
shape: 1
values: 0.721679221744617
}
}
Response:
{'data': {'names': ['proba'], 'tensor': {'shape': [1, 1], 'values': [0.1002015221659356]}}, 'meta': {'requestPath': {'model': 'seldonio/mock_classifier:1.7.0-dev'}}}
gRPC Request¶
[12]:
r = sc.predict(gateway="istio", transport="grpc")
assert r.success == True
print(r)
Success:True message:
Request:
{'meta': {}, 'data': {'tensor': {'shape': [1, 1], 'values': [0.17825624441824628]}}}
Response:
{'meta': {'requestPath': {'model': 'seldonio/mock_classifier:1.7.0-dev'}}, 'data': {'names': ['proba'], 'tensor': {'shape': [1, 1], 'values': [0.06074453279395597]}}}
[13]:
!helm delete mymodel
release "mymodel" uninstalled
Host Restriction¶
In this example we will restriction request to those with the Host header “seldon.io”
[3]:
%%writetemplate resources/model_seldon.yaml
apiVersion: machinelearning.seldon.io/v1
kind: SeldonDeployment
metadata:
name: example-seldon
annotations:
"seldon.io/istio-host": "seldon.io"
spec:
protocol: seldon
predictors:
- componentSpecs:
- spec:
containers:
- image: seldonio/mock_classifier:{VERSION}
name: classifier
graph:
name: classifier
type: MODEL
name: model
replicas: 1
[4]:
!kubectl apply -f resources/model_seldon.yaml
seldondeployment.machinelearning.seldon.io/example-seldon created
[5]:
!kubectl rollout status deploy/$(kubectl get deploy -l seldon-deployment-id=example-seldon -o jsonpath='{.items[0].metadata.name}')
Waiting for deployment "example-seldon-model-0-classifier" rollout to finish: 0 of 1 updated replicas are available...
deployment "example-seldon-model-0-classifier" successfully rolled out
[6]:
for i in range(60):
state = !kubectl get sdep example-seldon -o jsonpath='{.status.state}'
state = state[0]
print(state)
if state == "Available":
break
time.sleep(1)
assert state == "Available"
Available
[15]:
X=!curl -s -d '{"data": {"ndarray":[[1.0, 2.0, 5.0]]}}' \
-X POST http://localhost:8003/seldon/seldon/example-seldon/api/v1.0/predictions \
-H "Content-Type: application/json" \
assert X == []
[16]:
import json
X=!curl -s -d '{"data": {"ndarray":[[1.0, 2.0, 5.0]]}}' \
-X POST http://localhost:8003/seldon/seldon/example-seldon/api/v1.0/predictions \
-H "Content-Type: application/json" \
-H "Host: seldon.io"
d=json.loads(X[0])
print(d)
assert(d["data"]["ndarray"][0][0] > 0.4)
{'data': {'names': ['proba'], 'ndarray': [[0.43782349911420193]]}, 'meta': {'requestPath': {'classifier': 'seldonio/mock_classifier:1.9.0-dev'}}}
[17]:
!kubectl delete -f resources/model_seldon.yaml
seldondeployment.machinelearning.seldon.io "example-seldon" deleted
[ ]: