This page was generated from examples/streaming/knative-eventing/README.ipynb.

Seldon Core Real Time Stream Processing with KNative Eventing

In this example we will show how you can enable real time stream processing in Seldon Core by leveraging the KNative Eventing integration.

In this example we will deploy a simple model containerised with Seldon Core and we will leverage the basic Seldon Core integration with KNative Eventing which will allow us to connect it so it can receive cloud events as requests and return a cloudevent-enabled response which can be collected by other components.

Pre-requisites

You will require the following in order to go ahead: * Istio 1.42+ Installed (Documentation Instructions) * KNative Eventing 0.13 installed (Documentation Instructions) * Seldon Core v1.1+ installed with Istio Ingress Enabled (Documentation Instructions)

Deploy your Seldon Model

We will first deploy our model using Seldon Core. In this case we’ll use one of the pre-packaged model servers.

We first createa configuration file:

[10]:
%%writefile ./assets/simple-iris-deployment.yaml

apiVersion: machinelearning.seldon.io/v1
kind: SeldonDeployment
metadata:
  name: iris-deployment
spec:
  predictors:
  - graph:
      implementation: SKLEARN_SERVER
      modelUri: gs://seldon-models/sklearn/iris
      name: simple-iris-model
      children: []
    name: default
    replicas: 1

Overwriting ./assets/simple-iris-deployment.yaml

Run the model in our cluster

Now we run the Seldon Deployment configuration file we just created.

[31]:
!kubectl apply -f assets/simple-iris-deployment.yaml
seldondeployment.machinelearning.seldon.io/iris-deployment created

Check that the model has been deployed

[15]:
!kubectl get pods | grep iris
iris-deployment-default-0-simple-iris-model-65697469fb-b4dhs      2/2     Running     0          25s

Create a Trigger to reach our model

We want to create a trigger that is able to reach directly to the service.

We will be using the following seldon deployment:

[14]:
!kubectl get sdep | grep iris
iris-deployment       21s

Create trigger configuration

[25]:
%%writefile ./assets/seldon-knative-trigger.yaml

apiVersion: eventing.knative.dev/v1beta1
kind: Trigger
metadata:
  name: seldon-eventing-sklearn-trigger
spec:
  broker: default
  filter:
    attributes:
      type: seldon.iris-deployment.default.request
  subscriber:
    ref:
      apiVersion: machinelearning.seldon.io/v1
      kind: SeldonDeployment
      name: iris-deployment

Overwriting ./assets/seldon-knative-trigger.yaml

Create this trigger file which will send all cloudevents of type "seldon.<deploymentName>.request".

[26]:
!kubectl apply -f assets/seldon-knative-trigger.yaml
trigger.eventing.knative.dev/seldon-eventing-sklearn-trigger created

CHeck that the trigger is working correctly (you should see “Ready: True”), together with the URL that will be reached.

[32]:
!kubectl get trigger
NAME                              READY   REASON   BROKER    SUBSCRIBER_URI                                                                       AGE
event-display                     True             default   http://event-display.default.svc.cluster.local/                                      9d
seldon-eventing-sklearn-trigger   True             default   http://iris-deployment-default.default.svc.cluster.local:8000/api/v1.0/predictions   18m

Send a request to the KNative Eventing default broker

To send requests we can do so by sending a curl command from a pod inside of the cluster.

[33]:
!kubectl run --quiet=true -it --rm curl --image=radial/busyboxplus:curl --restart=Never -- \
    curl -v "default-broker.default.svc.cluster.local" \
        -H "Ce-Id: 536808d3-88be-4077-9d7a-a3f162705f79" \
        -H "Ce-specversion: 0.3" \
        -H "Ce-Type: seldon.iris-deployment.default.request" \
        -H "Ce-Source: seldon.examples.streaming.curl" \
        -H "Content-Type: application/json" \
        -d '{"data": { "ndarray": [[1,2,3,4]]}}'















Check our model has received it

We can do this by checking the logs (we can query the logs through the service name) and see that the request has been processed

[34]:
!kubectl logs svc/iris-deployment-default simple-iris-model | tail -6
   WARNING: This is a development server. Do not use it in a production deployment.
   Use a production WSGI server instead.
 * Debug mode: off
2020-03-27 17:16:36,681 - werkzeug:_log:122 - INFO:   * Running on http://0.0.0.0:9000/ (Press CTRL+C to quit)
2020-03-27 17:17:14,228 - SKLearnServer:predict:37 - INFO:  Calling predict_proba
2020-03-27 17:17:14,231 - werkzeug:_log:122 - INFO:  127.0.0.1 - - [27/Mar/2020 17:17:14] "POST /predict HTTP/1.1" 200 -

Connect a source to listen to the results of the seldon model

Our Seldon Model is producing results which are sent back to KNative.

This means that we can connect other subsequent services through a trigger that filters for those response cloudevents.

First create the service that willl print the results

This is just a simple pod that prints all the request data into the console.

[35]:
%%writefile ./assets/event-display-deployment.yaml

# event-display app deploment
apiVersion: apps/v1
kind: Deployment
metadata:
  name: event-display
spec:
  replicas: 1
  selector:
    matchLabels: &labels
      app: event-display
  template:
    metadata:
      labels: *labels
    spec:
      containers:
        - name: helloworld-python
          image: gcr.io/knative-releases/github.com/knative/eventing-sources/cmd/event_display
---
# Service that exposes event-display app.
# This will be the subscriber for the Trigger
kind: Service
apiVersion: v1
metadata:
  name: event-display
spec:
  selector:
    app: event-display
  ports:
    - protocol: TCP
      port: 80
      targetPort: 8080

Overwriting ./assets/event-display-deployment.yaml

Now run the event display resources

[36]:
!kubectl apply -f assets/event-display-deployment.yaml
deployment.apps/event-display unchanged
service/event-display unchanged

Check that the event display has been deployed

[37]:
!kubectl get pods | grep event
event-display-7c69959598-txxdg                                    1/1     Running     0          6d14h

Create trigger for event display

We now can create a trigger that sends all the requests of the type and source created by the seldon deployment to our event display pod

[39]:
%%writefile ./assets/event-display-trigger.yaml

# Trigger to send events to service above
apiVersion: eventing.knative.dev/v1alpha1
kind: Trigger
metadata:
  name: event-display
spec:
  broker: default
  filter:
    attributes:
      type: seldon.iris-deployment.default.response
      source: seldon.iris-deployment
  subscriber:
    ref:
      apiVersion: v1
      kind: Service
      name: event-display

Overwriting ./assets/event-display-trigger.yaml

Apply that trigger

[40]:
!kubectl apply -f assets/event-display-trigger.yaml
trigger.eventing.knative.dev/event-display configured

Check our triggers are correctly set up

We now should see the event trigger available.

[41]:
!kubectl get trigger
NAME                              READY   REASON   BROKER    SUBSCRIBER_URI                                                                       AGE
event-display                     True             default   http://event-display.default.svc.cluster.local/                                      9d
seldon-eventing-sklearn-trigger   True             default   http://iris-deployment-default.default.svc.cluster.local:8000/api/v1.0/predictions   18m

Send a couple of requests more

We can use the same process we outlined above to send a couple more events.

[50]:
!kubectl run --quiet=true -it --rm curl --image=radial/busyboxplus:curl --restart=Never -- \
    curl -v "default-broker.default.svc.cluster.local" \
        -H "Ce-Id: 536808d3-88be-4077-9d7a-a3f162705f79" \
        -H "Ce-Specversion: 0.3" \
        -H "Ce-Type: seldon.iris-deployment.default.request" \
        -H "Ce-Source: dev.knative.samples/helloworldsource" \
        -H "Content-Type: application/json" \
        -d '{"data": { "ndarray": [[1,2,3,4]]}}'















Visualise the requests that come from the service

[51]:
!kubectl logs svc/event-display | tail -40
☁️  cloudevents.Event
Validation: valid
Context Attributes,
  specversion: 0.3
  type: seldon.iris-deployment.default.response
  source: seldon.iris-deployment
  id: bee392e0-77cc-44fc-915b-5a08660a1071
  time: 2020-03-27T17:20:42.040931317Z
  datacontenttype: application/json
Extensions,
  knativearrivaltime: 2020-03-27T17:20:42.045829175Z
  knativehistory: default-kne-trigger-kn-channel.default.svc.cluster.local
  path: /api/v1.0/predictions
  traceparent: 00-e01a320040c3f368a14bd3b54c294107-6299f694fefb34b5-00
Data,
  {
    "data": {
      "names": [
        "t:0",
        "t:1",
        "t:2"
      ],
      "ndarray": [
        [
          0.0006985194531162841,
          0.003668039039435755,
          0.9956334415074478
        ]
      ]
    },
    "meta": {}
  }

[ ]: