This page was generated from examples/triton_gpt2/AzureSetup.ipynb.
Setup Azure Kubernetes Infrastructure¶
In this notebook we will - Login to Aure account - Create AKS cluster with - GPU enabled Spot VM nodepool for running ML elastic training - CPU VM nodepool for running typical workloads - Azure Storage Account for hosting model data - Deploy Kubernetes Components - Install Azure Blob CSI Driver to map Blob storage to container as persistent volumes - Create Kubernetes PersistentVolume and PersistentVolumeClaim
Define Variables¶
Set variables required for the project
[13]:
subscription_id = "<xxxx-xxxx-xxxx-xxxx>" # fill in
resource_group = "seldon" # feel free to replace or use this default
region = "eastus2" # ffeel free to replace or use this default
storage_account_name = "modeltestsgpt" # fill in
storage_container_name = "gpt2tf"
aks_name = "modeltests" # feel free to replace or use this default
aks_gpupool = "gpunodes" # feel free to replace or use this default
aks_cpupool = "cpunodes" # feel free to replace or use this default
aks_gpu_sku = "Standard_NC6s_v3" # feel free to replace or use this default
aks_cpu_sku = "Standard_F8s_v2"
Azure account login¶
If you are not already logged in to an Azure account, the command below will initiate a login. This will pop up a browser where you can select your login. (if no web browser is available or if the web browser fails to open, use device code flow with az login --use-device-code
or login in WSL command prompt and proceed to notebook)
[ ]:
%%bash
az login -o table
[ ]:
!az account set --subscription "$subscription_id"
[ ]:
!az account show
Create Resource Group¶
Azure encourages the use of groups to organize all the Azure components you deploy. That way it is easier to find them but also we can delete a number of resources simply by deleting the group.
[ ]:
!az group create -l {region} -n {resource_group}
Create AKS Cluster and NodePools¶
Below, we create the AKS cluster with default 1 system node (to save time, in production use more nodes as per best practices) in the resource group we created earlier. This step can take 5 or more minutes.
[ ]:
%%time
!az aks create --resource-group {resource_group} \
--name {aks_name} \
--node-vm-size Standard_D8s_v3 \
--node-count 1 \
--location {region} \
--kubernetes-version 1.18.17 \
--node-osdisk-type Ephemeral \
--generate-ssh-keys
Connect to AKS Cluster¶
To configure kubectl to connect to Kubernetes cluster, run the following command
[ ]:
!az aks get-credentials --resource-group {resource_group} --name {aks_name}
Let’s verify connection by listing the nodes.
[34]:
!kubectl get nodes
NAME STATUS ROLES AGE VERSION
aks-agentpool-28613018-vmss000000 Ready agent 28d v1.19.9
aks-agentpool-28613018-vmss000001 Ready agent 28d v1.19.9
aks-agentpool-28613018-vmss000002 Ready agent 28d v1.19.9
aks-cpunodes-28613018-vmss000000 Ready agent 28d v1.19.9
aks-cpunodes-28613018-vmss000001 Ready agent 28d v1.19.9
aks-gpunodes-28613018-vmss000001 Ready agent 5h27m v1.19.9
Taint System node with CriticalAddonsOnly
taint so it is available only for system workloads
[ ]:
!kubectl taint nodes -l kubernetes.azure.com/mode=system CriticalAddonsOnly=true:NoSchedule --overwrite
Create GPU enabled and CPU Node Pools¶
To create GPU enabled nodepool, will use fully configured AKS image that contains the NVIDIA device plugin for Kubenetes, see Use the AKS specialized GPU image (preview). Creating nodepools could take five or more minutes.
[ ]:
%%time
!az feature register --name GPUDedicatedVHDPreview --namespace Microsoft.ContainerService
!az feature list -o table --query "[?contains(name, 'Microsoft.ContainerService/GPUDedicatedVHDPreview')].{Name:name,State:properties.state}"
!az provider register --namespace Microsoft.ContainerService
!az extension add --name aks-preview
Create GPU NodePool with GPU taint¶
For more information on Azure Nodepools https://docs.microsoft.com/en-us/azure/aks/use-multiple-node-pools
[14]:
%%time
print ({aks_gpu_sku})
!az aks nodepool add \
--resource-group {resource_group} \
--cluster-name {aks_name} \
--name {aks_gpupool} \
--node-taints nvidia.com=gpu:NoSchedule \
--node-count 1 \
--node-vm-size {aks_gpu_sku} \
--aks-custom-headers UseGPUDedicatedVHD=true,usegen2vm=true
{
The behavior of this command has been altered by the following extension: aks-preview
Node pool gpunodes already exists, please try a different name, use 'aks nodepool list' to get current list of node pool
CPU times: user 275 ms, sys: 79 ms, total: 354 ms
Wall time: 5.38 s
Verify GPU is available on Kubernetes Node¶
Now use the kubectl describe node command to confirm that the GPUs are schedulable. Under the Capacity section, for Standard_NC12 sku the GPU should list as nvidia.com/gpu: 2
[33]:
!kubectl describe node -l accelerator=nvidia | grep nvidia -A 5 -B 5
Name: aks-gpunodes-28613018-vmss000001
Roles: agent
Labels: accelerator=nvidia
agentpool=gpunodes
beta.kubernetes.io/arch=amd64
beta.kubernetes.io/instance-type=Standard_NC12
beta.kubernetes.io/os=linux
failure-domain.beta.kubernetes.io/region=eastus2
--
cpu: 12
ephemeral-storage: 129900528Ki
hugepages-1Gi: 0
hugepages-2Mi: 0
memory: 115387540Ki
nvidia.com/gpu: 2
pods: 30
Allocatable:
attachable-volumes-azure-disk: 48
cpu: 11780m
ephemeral-storage: 119716326407
hugepages-1Gi: 0
hugepages-2Mi: 0
memory: 105854100Ki
nvidia.com/gpu: 2
pods: 30
System Info:
Machine ID: db67bd967e1441febad873ba49d35adc
System UUID: f39ce4bc-11c6-8643-8a8a-dfb4998a0524
Boot ID: eb926e42-d4e7-4760-b124-9b09c0e56c57
--
memory 275Mi (0%) 850Mi (0%)
ephemeral-storage 0 (0%) 0 (0%)
hugepages-1Gi 0 (0%) 0 (0%)
hugepages-2Mi 0 (0%) 0 (0%)
attachable-volumes-azure-disk 0 0
nvidia.com/gpu 0 0
Events: <none>
Create CPU NodePool for running regular workloads¶
[3]:
%%time
!az aks nodepool add \
--resource-group {resource_group} \
--cluster-name {aks_name} \
--name {aks_cpupool} \
--enable-cluster-autoscaler \
--node-osdisk-type Ephemeral \
--min-count 1 \
--max-count 3 \
--node-vm-size {aks_cpu_sku} \
--node-osdisk-size 128
The behavior of this command has been altered by the following extension: aks-preview
{
"agentPoolType": "VirtualMachineScaleSets",
"availabilityZones": null,
"count": 3,
"enableAutoScaling": true,
"enableEncryptionAtHost": false,
"enableFips": false,
"enableNodePublicIp": false,
"gpuInstanceProfile": null,
"id": "/subscriptions/xxxx-xxxx-xxxx-xxxx-xxxxxx/resourcegroups/seldon/providers/Microsoft.ContainerService/managedClusters/modeltests/agentPools/cpunodes",
"kubeletConfig": null,
"kubeletDiskType": "OS",
"linuxOsConfig": null,
"maxCount": 3,
"maxPods": 30,
"minCount": 1,
"mode": "User",
"name": "cpunodes",
"nodeImageVersion": "AKSUbuntu-1804gen2containerd-2021.05.08",
"nodeLabels": null,
"nodePublicIpPrefixId": null,
"nodeTaints": null,
"orchestratorVersion": "1.19.9",
"osDiskSizeGb": 128,
"osDiskType": "Ephemeral",
"osSku": "Ubuntu",
"osType": "Linux",
"podSubnetId": null,
"powerState": {
"code": "Running"
},
"provisioningState": "Succeeded",
"proximityPlacementGroupId": null,
"resourceGroup": "seldon",
"scaleSetEvictionPolicy": null,
"scaleSetPriority": null,
"spotMaxPrice": null,
"tags": null,
"type": "Microsoft.ContainerService/managedClusters/agentPools",
"upgradeSettings": {
"maxSurge": null
},
"vmSize": "Standard_F8s_v2",
"vnetSubnetId": "/subscriptions/xxxxx-xxxx-xxxx-xxxxx-xxxxxx/resourceGroups/seldon/providers/Microsoft.Network/virtualNetworks/seldon-vnet/subnets/default"
}
CPU times: user 4.17 s, sys: 1.51 s, total: 5.68 s
Wall time: 2min 36s
Verify Taints on the Kubernetes nodes¶
Verify that system pool and have the Taints CriticalAddonsOnly
and sku=gpu
respectively
[35]:
!kubectl get nodes -o json | jq '.items[].spec.taints'
[
{
"effect": "NoSchedule",
"key": "CriticalAddonsOnly",
"value": "true"
}
]
[
{
"effect": "NoSchedule",
"key": "CriticalAddonsOnly",
"value": "true"
}
]
[
{
"effect": "NoSchedule",
"key": "CriticalAddonsOnly",
"value": "true"
}
]
null
null
[
{
"effect": "NoSchedule",
"key": "sku",
"value": "gpu"
}
]
Create Storage Account for training data¶
In this section of the notebook, we’ll create an Azure blob storage that we’ll use throughout the tutorial. This object store will be used to store input images and save checkpoints. Use az cli
to create the account
[36]:
%%time
!az storage account create -n {storage_account_name} -g {resource_group} --query 'provisioningState'
"Succeeded"
CPU times: user 674 ms, sys: 214 ms, total: 888 ms
Wall time: 22 s
Grab the keys of the storage account that was just created.We would need them for binding Kubernetes Persistent Volume. The –quote ‘[0].value’ part of the command simply means to select the value of the zero-th indexed of the set of keys.
[2]:
key = !az storage account keys list --account-name {storage_account_name} -g {resource_group} --query '[0].value' -o tsv
The stdout from the command above is stored in a string array of 1. Select the element in the array.
[3]:
storage_account_key = key[0]
[55]:
# create storage container
!az storage container create \
--account-name {storage_account_name} \
--account-key {storage_account_key} \
--name {storage_container_name}
{
"created": true
}
Install Kubernetes Blob CSI Driver¶
Azure Blob Storage CSI driver for Kubernetes allows Kubernetes to access Azure Storage. We will deploy it using Helm3 package manager as described in the docs https://github.com/kubernetes-sigs/blob-csi-driver/tree/master/charts
[ ]:
!az aks get-credentials --resource-group {resource_group} --name {aks_name}
[57]:
!helm repo add blob-csi-driver https://raw.githubusercontent.com/kubernetes-sigs/blob-csi-driver/master/charts
!helm install blob-csi-driver blob-csi-driver/blob-csi-driver --namespace kube-system --version v1.1.0
"blob-csi-driver" already exists with the same configuration, skipping
W0527 23:11:20.183604 13719 warnings.go:70] storage.k8s.io/v1beta1 CSIDriver is deprecated in v1.19+, unavailable in v1.22+; use storage.k8s.io/v1 CSIDriver
W0527 23:11:20.506450 13719 warnings.go:70] storage.k8s.io/v1beta1 CSIDriver is deprecated in v1.19+, unavailable in v1.22+; use storage.k8s.io/v1 CSIDriver
NAME: blob-csi-driver
LAST DEPLOYED: Thu May 27 23:11:19 2021
NAMESPACE: kube-system
STATUS: deployed
REVISION: 1
TEST SUITE: None
NOTES:
The Azure Blob Storage CSI driver is getting deployed to your cluster.
To check Azure Blob Storage CSI driver pods status, please run:
kubectl --namespace=kube-system get pods --selector="release=blob-csi-driver" --watch
[59]:
!kubectl -n kube-system get pods -l "app.kubernetes.io/instance=blob-csi-driver"
NAME READY STATUS RESTARTS AGE
csi-blob-controller-7b9db4967c-fbsm2 4/4 Running 0 22s
csi-blob-controller-7b9db4967c-hdglw 4/4 Running 0 22s
csi-blob-node-7tgl8 3/3 Running 0 22s
csi-blob-node-89rkn 3/3 Running 0 22s
csi-blob-node-nnhfh 3/3 Running 0 22s
csi-blob-node-pb584 3/3 Running 0 22s
csi-blob-node-q6z6t 3/3 Running 0 22s
csi-blob-node-tq4mh 3/3 Running 0 22s
Create Persistent Volume for Azure Blob¶
For more details on creating PersistentVolume
using CSI driver refer to https://github.com/kubernetes-sigs/blob-csi-driver/blob/master/deploy/example/e2e_usage.md
[4]:
# Create secret to access storage account
!kubectl create secret generic azure-blobsecret --from-literal azurestorageaccountname={storage_account_name} --from-literal azurestorageaccountkey="{storage_account_key}" --type=Opaque
secret/azure-blobsecret created
Persistent Volume YAML definition is in azure-blobfules-pv.yaml
with fields pointing to secret created above and containername we created in storage account:
csi:
driver: blob.csi.azure.com
readOnly: false
volumeHandle: trainingdata # make sure this volumeid is unique in the cluster
volumeAttributes:
containerName: workerdata # !! Modify if changed in Notebook
nodeStageSecretRef:
name: azure-blobsecret
[16]:
%%writefile azure-blobfuse-pv.yaml
apiVersion: v1
kind: PersistentVolume
metadata:
name: pv-gptblob
spec:
capacity:
storage: 10Gi
accessModes:
- ReadWriteMany
persistentVolumeReclaimPolicy: Retain # "Delete" is not supported in static provisioning
csi:
driver: blob.csi.azure.com
readOnly: false
volumeHandle: trainingdata # make sure this volumeid is unique in the cluster
volumeAttributes:
containerName: gpt2onnx # Modify if changed in Notebook
nodeStageSecretRef:
name: azure-blobsecret
namespace: default
mountOptions:
- -o uid=8888 # user in Pod security context
- -o allow_other
---
kind: PersistentVolumeClaim
apiVersion: v1
metadata:
name: pvc-gptblob
spec:
accessModes:
- ReadWriteMany
resources:
requests:
storage: 10Gi
volumeName: pv-gptblob
storageClassName: ""
Overwriting azure-blobfuse-pv.yaml
[17]:
# Create PersistentVolume and PersistenVollumeClaim for container mounts
!kubectl apply -f azure-blobfuse-pv.yaml
persistentvolume/pv-gptblob created
persistentvolumeclaim/pvc-gptblob created
[19]:
# Verify PVC is bound
!kubectl get pv,pvc
NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON AGE
persistentvolume/pv-blob 10Gi RWX Retain Terminating default/pvc-blob 113m
persistentvolume/pv-gptblob 10Gi RWX Retain Bound default/pvc-gptblob 18s
NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE
persistentvolumeclaim/pvc-blob Terminating pv-blob 10Gi RWX 113m
persistentvolumeclaim/pvc-gptblob Bound pv-gptblob 10Gi RWX 17s
In the end of this step you will have AKS cluster and Storage account in resource group. ALK cluster will have cpu and gpu nodepools in addition to system nodepool.