alibi_detect.models.tensorflow.resnet module
- class alibi_detect.models.tensorflow.resnet.LearningRateBatchScheduler(schedule, batch_size, steps_per_epoch)[source]
Bases:
Callback
- alibi_detect.models.tensorflow.resnet.conv_block(x_in, filters, kernel_size, stage, block, strides=(2, 2), l2_regularisation=True)[source]
Conv block in ResNet with a parameterised skip connection to reduce the width and height controlled by the strides.
- Parameters:
x_in (
Tensor
) – Input Tensor.filters (
Tuple
[int
,int
]) – Number of filters for each of the 2 conv layers.kernel_size (
Union
[int
,list
,Tuple
[int
]]) – Kernel size for the conv layers.stage (
int
) – Stage of the block in the ResNet.block (
str
) – Block within a stage in the ResNet.strides (
Tuple
[int
,int
]) – Stride size applied to reduce the image size.l2_regularisation (
bool
) – Whether to apply L2 regularisation.
- Return type:
Tensor
- Returns:
Output Tensor of the conv block.
- alibi_detect.models.tensorflow.resnet.identity_block(x_in, filters, kernel_size, stage, block, l2_regularisation=True)[source]
Identity block in ResNet.
- Parameters:
x_in (
Tensor
) – Input Tensor.filters (
Tuple
[int
,int
]) – Number of filters for each of the 2 conv layers.kernel_size (
Union
[int
,list
,Tuple
[int
]]) – Kernel size for the conv layers.stage (
int
) – Stage of the block in the ResNet.block (
str
) – Block within a stage in the ResNet.l2_regularisation (
bool
) – Whether to apply L2 regularisation.
- Return type:
Tensor
- Returns:
Output Tensor of the identity block.
- alibi_detect.models.tensorflow.resnet.l2_regulariser(l2_regularisation=True)[source]
Apply L2 regularisation to kernel.
- Parameters:
l2_regularisation (
bool
) – Whether to apply L2 regularisation.- Returns:
Kernel regularisation.
- alibi_detect.models.tensorflow.resnet.learning_rate_schedule(current_epoch, current_batch, batches_per_epoch, batch_size)[source]
Linear learning rate scaling and learning rate decay at specified epochs.
- alibi_detect.models.tensorflow.resnet.preprocess_image(x, is_training=True)[source]
- Return type:
ndarray
- alibi_detect.models.tensorflow.resnet.resnet(num_blocks, classes=10, input_shape=(32, 32, 3))[source]
Define ResNet.
- alibi_detect.models.tensorflow.resnet.resnet_block(x_in, size, filters, kernel_size, stage, strides=(2, 2), l2_regularisation=True)[source]
Block in ResNet combining a conv block with identity blocks.
- Parameters:
x_in (
Tensor
) – Input Tensor.size (
int
) – The ResNet block consists of 1 conv block and size-1 identity blocks.filters (
Tuple
[int
,int
]) – Number of filters for each of the conv layers.kernel_size (
Union
[int
,list
,Tuple
[int
]]) – Kernel size for the conv layers.stage (
int
) – Stage of the block in the ResNet.strides (
Tuple
[int
,int
]) – Stride size applied to reduce the image size.l2_regularisation (
bool
) – Whether to apply L2 regularisation.
- Return type:
Tensor
- Returns:
Output Tensor of the conv block.